Related Topics:
Common Core Grade 8
More Grade 8 Lessons
Common Core Mathematics
Examples, videos, and lessons with examples and solutions to help Grade 8 students learn how to organize bivariate categorical data into a two-way table. Students calculate row and column relative frequencies and interpret them in context.
Lesson Summary
Lesson 13 Classwork
On an upcoming field day at school, the principal wants to provide ice cream during lunch. She will offer three flavors: chocolate, strawberry, and vanilla. She selected your class to complete a survey to help her determine how much of each flavor to buy.
Students in a different class were asked the same question about their favorite ice cream flavor. The table below shows the ice cream flavors and the number of students who chose each flavor for that particular class. This table is called a one-way frequency table because it shows the counts of a univariate categorical variable.
We compute the relative frequency for each ice cream flavor by dividing the count by the total number of observations. Since out of students answered “chocolate,” the relative frequency would be 11/25 = 0.44. This relative frequency shows that 44% of the class prefers chocolate ice cream. In other words, the relative frequency is the proportional value that each category is of the whole.
Use the table for the preferred ice cream flavors from the class in Example 1 to answer the following questions.
9. What is the relative frequency for the category “strawberry?”
10. Write a sentence interpreting the relative frequency value in the context of strawberry ice cream preference.
The principal also wondered if boys and girls have different favorite ice cream flavors. She decided to redo the survey by taking a random sample of students from the school and recording both their favorite ice cream flavor and their gender.
She asked the following two questions:
The results of the survey are as follows:
The values of two variables, which were ice cream flavor and gender, were recorded in this survey. Since both of the variables are categorical, the data are bivariate categorical data.
In the previous exercises, you used the total number of students to calculate relative frequencies. These relative frequencies were the proportion of the whole group who answered the survey a certain way. Sometimes row or column totals are used to calculate relative frequencies. We call these row relative frequencies or column relative frequencies. Below is the two-way frequency table for your reference. To calculate “the proportion of male students that prefer chocolate ice cream,” divide the 22 male students who preferred chocolate ice cream by the total of 45 male students. This proportion is 22/45 = 0.49. Notice that you used the row total to make this calculation. This is a row relative frequency.
In Exercise 13, you used the total number of students to calculate relative frequencies. These relative frequencies were the proportion of the whole group who answered the survey a certain way.
18. Suppose you are interested in the proportion of male students that prefer chocolate ice cream. How is this value different from “the proportion of students that are male and prefer chocolate ice cream?” Discuss this with your neighbor.
19. Use the table provided in Example 3 to calculate the following relative frequencies.
a. What proportion of students that prefer vanilla ice cream is female?
b. What proportion of male students prefers strawberry ice cream? Write a sentence explaining the meaning of this proportion in context of this problem.
c. What proportion of female students prefers strawberry ice cream?
d. What proportion of students who prefer strawberry ice cream is female?
20. A student is selected at random from this school. What would you predict this student’s favorite ice cream to be?
Explain why you choose this flavor.
21. Suppose the randomly selected student is male. What would you predict his favorite flavor of ice cream to be?
Explain why you choose this flavor.
22. Suppose the randomly selected student is female. What would you predict her favorite flavor of ice cream to be?
Explain why you choose this flavor.
Lesson 13 Exit Ticket
Try the free Mathway calculator and
problem solver below to practice various math topics. Try the given examples, or type in your own
problem and check your answer with the step-by-step explanations.
We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.