Learning Targets:
Related Pages
Illustrative Math
Grade 6
Let’s find the values of expressions with exponents.
Illustrative Math Unit 6.6, Lesson 14 (printable worksheets)
Exponents give us a new way to describe operations with numbers, so we need to understand how exponents get along with the other operations we know.
When we write 6 · 42, we want to make sure everyone agrees about how to evaluate this. Otherwise some people might multiply first and others compute the exponent first, and different people would get different values for the same expression!
Earlier we saw situations in which 6 · 42 represented the surface area of a cube with side length 4 units. When computing the surface area, we evaluate 42 first (or find the area of one face of the cube first) and then multiply the result by 6. In many other expressions that use exponents, the part with an exponent is intended to be evaluated first.
The following diagram gives some examples of evaluating expressions with exponents.
Based on the given information, what other measurements of the square and cube could we find?
See Applet
Scroll down the page for the solutions to the “Are you ready for more?” section.
A cube has side length 10 inches. Jada says the surface area of the cube is 600 in2, and Noah says the surface area of the cube is 3,600 in2. Here is how each of them reasoned:
Jada’s Method:
6 · 102
6 · 100
600
Noah’s Method:
6 · 102
602
3,600
Do you agree with either of them? Explain your reasoning.
Evaluate the expressions in one of the columns. Your partner will work on the other column. Check with your partner after you finish each row. Your answers in each row should be the same. If your answers aren’t the same, work together to find the error.
Consider this equation: ⃞2 + ⃞2 = ⃞2. An example of 3 different whole numbers that could go in the boxes are 3, 4, and 5, since
32 + 42 = 52
(That is, 9 + 16 = 25). Can you find a different set of 3 different whole numbers that make the equation true?
2. How many sets of 3 different whole numbers can you find?
3. Can you find a set of 3 different whole numbers that make this equation true?
⃞3 + ⃞3 = ⃞3
4. How about this one?
⃞4 + ⃞4 = ⃞4
5. Once you have worked on this a little while, you can understand a problem that is famous in the history of math. (Alas, this space is too small to contain it.) If you are interested, consider doing some further research on Fermat’s Last Theorem.
The Open Up Resources math curriculum is free to download from the Open Up Resources website and is also available from Illustrative Mathematics.
Try the free Mathway calculator and
problem solver below to practice various math topics. Try the given examples, or type in your own
problem and check your answer with the step-by-step explanations.
We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.