Sum And Difference Identities


In these lessons we will learn

  • the sum identities and difference identities for sine, cosine and tangent.
  • how to use the sum identities and difference identities to simplify trigonometric expressions.
  • how to use the sum identities and difference identities to prove other trigonometric identities.



Share this page to Google Classroom

Related Pages
Lessons On Trigonometry
Inverse trigonometry
Trigonometric Functions

What are the Sum and Difference Identities?

The following shows the Sum and Difference Identities for sin, cos and tan. Scroll down the page for more examples and solutions on how to use the identities.

Sum and Difference Identities

Example:

Solution:
Given that cos(α + β) = cos α cos β – sin α sin β, then





Example:

Solution:

How to use the sum and difference identities for sin, cos, and tan?

Example:

  1. Find sin(105°) exactly
  2. Find cos(105°) exactly
  3. Find tan(105°) exactly

How to use Sum and Difference Identities to find exact trig values?

Example:

  1. Find \(\cos \left( {\frac{{3\pi }}{4},\frac{\pi }{3}} \right)\) exactly
  2. Find cos(42°)cos(18°) - sin(42°)sin(18°) exactly
  3. Find \(\frac{{\tan 80^\circ - \tan 35^\circ }}{{1 + \tan 80^\circ \tan 35^\circ }}\) exactly
  4. Find cos(u + v) exactly if sin(u) = 3/5 and sin(v) = 12/13 where u and v are acute angles (quadrant I)

How to use the Sum and Difference Identities to Prove Other Identities

Example:
Prove sin(α + β) - sin(α - β) = 2cosαsinβ

Using the Sum and Difference Identities for Sine, Cosine and Tangent

Example 1:
If sin x = 12/13 and x is in the first quadrant, find tan(2x)



Using the Sum and Difference Identities for Sine, Cosine and Tangent

Example 2:
If tan x = 5/3 and x is in the first quadrant, find sin(2x)

Using the Sum and Difference Identities for Sine, Cosine and Tangent

Example 3:
Simplify 1 - 16sin2x cos2x

Try the free Mathway calculator and problem solver below to practice various math topics. Try the given examples, or type in your own problem and check your answer with the step-by-step explanations.
Mathway Calculator Widget



We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.